Mining Cohesive Itemsets in Graphs
نویسندگان
چکیده
Discovering patterns in graphs is a well-studied field of data mining. While a lot of work has already gone into finding structural patterns in graph datasets, we focus on relaxing the structural requirements in order to find items that often occur near each other in the input graph. By doing this, we significantly reduce the search space and simplify the output. We look for itemsets that are both frequent and cohesive, which enables us to use the anti-monotonicity property of the frequency measure to speed up our algorithm. We experimentally demonstrate that our method can handle larger and more complex datasets than the existing methods that either run out of memory or take too long.
منابع مشابه
Frequent Itemsets Mining: An Efficient Graphical Approach
Recent advances in computer technology in terms of speed, cost, tremendous amount of computing power and decrease data processing time has spurred increased interest in data mining applications to extract useful knowledge from data. Over the last couple of years, data mining technology has been successfully employed to various business domains and scientific areas. Various data mining technique...
متن کاملA New Algorithm for High Average-utility Itemset Mining
High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...
متن کاملMining Association Rules in Graphs Based on Frequent Cohesive Itemsets
Searching for patterns in graphs is an active field of data mining. In this context, most work has gone into discovering subgraph patterns, where the task is to find strictly defined frequently re-occurring structures, i.e., node labels always interconnected in the same way. Recently, efforts have been made to relax these strict demands, and to simply look for node labels that frequently occur ...
متن کاملData sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملMINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS
This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014